157 research outputs found

    Knowledge Refinement via Rule Selection

    Full text link
    In several different applications, including data transformation and entity resolution, rules are used to capture aspects of knowledge about the application at hand. Often, a large set of such rules is generated automatically or semi-automatically, and the challenge is to refine the encapsulated knowledge by selecting a subset of rules based on the expected operational behavior of the rules on available data. In this paper, we carry out a systematic complexity-theoretic investigation of the following rule selection problem: given a set of rules specified by Horn formulas, and a pair of an input database and an output database, find a subset of the rules that minimizes the total error, that is, the number of false positive and false negative errors arising from the selected rules. We first establish computational hardness results for the decision problems underlying this minimization problem, as well as upper and lower bounds for its approximability. We then investigate a bi-objective optimization version of the rule selection problem in which both the total error and the size of the selected rules are taken into account. We show that testing for membership in the Pareto front of this bi-objective optimization problem is DP-complete. Finally, we show that a similar DP-completeness result holds for a bi-level optimization version of the rule selection problem, where one minimizes first the total error and then the size

    Structure and Complexity of Bag Consistency

    Get PDF
    Since the early days of relational databases, it was realized that acyclic hypergraphs give rise to database schemas with desirable structural and algorithmic properties. In a by-now classical paper, Beeri, Fagin, Maier, and Yannakakis established several different equivalent characterizations of acyclicity; in particular, they showed that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for relations over that schema holds, which means that every collection of pairwise consistent relations over the schema is globally consistent. Even though real-life databases consist of bags (multisets), there has not been a study of the interplay between local consistency and global consistency for bags. We embark on such a study here and we first show that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to global consistency property for bags over that schema holds. After this, we explore algorithmic aspects of global consistency for bags by analyzing the computational complexity of the global consistency problem for bags: given a collection of bags, are these bags globally consistent? We show that this problem is in NP, even when the schema is part of the input. We then establish the following dichotomy theorem for fixed schemas: if the schema is acyclic, then the global consistency problem for bags is solvable in polynomial time, while if the schema is cyclic, then the global consistency problem for bags is NP-complete. The latter result contrasts sharply with the state of affairs for relations, where, for each fixed schema, the global consistency problem for relations is solvable in polynomial time

    Universal Solutions in Temporal Data Exchange

    Get PDF
    During the past fifteen years, data exchange has been explored in depth and in a variety of different settings. Even though temporal databases constitute a mature area of research studied over several decades, the investigation of temporal data exchange was initiated only very recently. We analyze the properties of universal solutions in temporal data exchange with emphasis on the relationship between universal solutions in the context of concrete time and universal solutions in the context of abstract time. We show that challenges arise even in the setting in which the data exchange specifications involve a single temporal variable. After this, we identify settings, including data exchange settings that involve multiple temporal variables, in which these challenges can be overcome

    The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies

    Full text link
    Boolean satisfiability problems are an important benchmark for questions about complexity, algorithms, heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered around the structure and connectivity of the solution space. Motivated by this work, we study structural and connectivity-related properties of the space of solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer's framework. On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be induced by the solutions of Boolean formulas, as well as for the diameter of the connected components of the solution space. On the computational side, we establish dichotomy theorems for the complexity of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our results assert that the intractable side of the computational dichotomies is PSPACE-complete, while the tractable side - which includes but is not limited to all problems with polynomial time algorithms for satisfiability - is in P for the st-connectivity question, and in coNP for the connectivity question. The diameter of components can be exponential for the PSPACE-complete cases, whereas in all other cases it is linear; thus, small diameter and tractability of the connectivity problems are remarkably aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the subgraphs induced by the solution space possess certain good structural properties, whereas in the intractable cases, the subgraphs can be arbitrary

    Generalized satisfiability problems via operator assignments

    Get PDF
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. This representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For constraints given by a system of linear equations over the two-element field, earlier work in the foundations of quantum mechanics has shown that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. Our main result is a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments.Peer ReviewedPostprint (published version

    Model-theoretic Characterizations of Rule-based Ontologies

    Get PDF
    • …
    corecore